Tài liệu gồm 218 trang, tuyển tập các chủ đề phương trình nghiệm nguyên chọn lọc, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán.
MỤC LỤC:
Phần 1 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 1.
1 PHƯƠNG PHÁP XÉT TÍNH CHIA HẾT 2.
A Phương pháp phát hiện tính chia hết của một ẩn 2.
B Phương pháp đưa về phương trình ước số 2.
C Phương pháp biểu thị một ẩn theo ẩn còn lại rồi dùng tính chia hết 3.
D Phương pháp xét số dư của từng vế 4.
2 PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC 8.
A Phương pháp sắp thứ tự các ẩn 8.
B Phương pháp xét từng khoảng giá trị của ẩn 9.
C Phương pháp chỉ ra nghiệm nguyên 10.
D Phương pháp sử dụng điều kiện để phương trình bậc hai có nghiệm 10.
3 PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG 17.
A Sử dụng tính chất về chia hết của số chính phương 17.
B Tạo ra bình phương đúng 17.
C Tạo ra tổng các số chính phương 18.
D Xét các số chính phương liên tiếp 18.
E Sử dụng điều kiện biệt số ∆ là số chính phương 19.
F Sử dụng tính chất: 20.
G Sử dụng tính chất: 21.
4 PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN 28.
Phần 2 MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN 32.
1 PHƯƠNG TRÌNH MỘT ẨN 32.
2 PHƯƠNG TRÌNH BẬC NHẤT VỚI HAI ẨN 35.
A Cách giải phương trình bậc nhất hai ẩn ax + by = c với nghiệm nguyên (a, b, c thuộc Z) 36.
3 PHƯƠNG TRÌNH BẬC HAI VỚI HAI ẨN 39.
4 PHƯƠNG TRÌNH BẬC BA HAI ẨN 57.
5 PHƯƠNG TRÌNH BẬC BỐN VỚI HAI ẨN 66.
6 PHƯƠNG TRÌNH ĐA THỨC VỚI BA ẨN TRỞ LÊN 76.
7 PHƯƠNG TRÌNH PHÂN THỨC 85.
8 PHƯƠNG TRÌNH MŨ 93.
9 PHƯƠNG TRÌNH VÔ TỈ 104.
10 HỆ PHƯƠNG TRÌNH VỚI NGHIỆM NGUYÊN 114.
11 TÌM ĐIỀU KIỆN ĐỂ PHƯƠNG TRÌNH CÓ NGHIỆM NGUYÊN 118.
Phần 3 BÀI TOÁN ĐƯA VỀ GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 125.
1 BÀI TOÁN VỀ SỐ TỰ NHIÊN VÀ CÁC CHỮ SỐ 125.
2 BÀI TOÁN VỀ TÍNH CHIA HẾT VÀ SỐ NGUYÊN TỐ 138.
3 BÀI TOÁN THỰC TẾ 152.
Phần 4 PHƯƠNG TRÌNH NGHIỆM NGUYÊN MANG TÊN CÁC NHÀ TOÁN HỌC 159.
1 THUẬT TOÁN EUCLIDE VÀ PHƯƠNG PHÁP TÌM NGHIỆM RIÊNG ĐỂ GIẢI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 159.
A Mở đầu 159.
B Cách giải tổng quát 160.
C Ví dụ 161.
D Cách tìm một nghiệm riêng của phương trình ax + by = c 161.
2 PHƯƠNG TRÌNH PELL 166.
A Mở đầu 166.
B Phương trình Pell 166.
3 PHƯƠNG TRÌNH PYTHAGORE 170.
A Mở đầu 170.
4 PHƯƠNG TRÌNH FERMAT 175.
A Định lí nhỏ Fermat 175.
B Định lí lớn Fermat 175.
C Lịch sử về chứng minh định lí lớn Fermat 176.
D Chứng minh định lí lớn Fermat với n=4 177.
5 PHƯƠNG TRÌNH DIONPHANTE 180.
Phần 5 NHỮNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA CÓ LỜI GIẢI 182.
1 CÒN NHIỀU PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA GIẢI ĐƯỢC 182.
A Phương trình bậc ba với hai ẩn 182.
B Phương trình bậc bốn với hai ẩn 183.
C Phương trình bậc cao với hai ẩn 183.
D Phương trình với ba ẩn trở lên 184.
2 NHỮNG BƯỚC ĐỘT PHÁ 185.
Phần 6 PHƯƠNG TRÌNH NGHIỆM NGUYÊN QUA CÁC KỲ THI 187.
1 Trong các đề thi vào lớp 10 187.
2 Trong các đề thi học sinh giỏi quốc gia và quốc tế 209.
Bài toán phương trình nghiệm nguyên chọn lọc là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán phương trình nghiệm nguyên chọn lọc thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán phương trình nghiệm nguyên chọn lọc, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán phương trình nghiệm nguyên chọn lọc, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán phương trình nghiệm nguyên chọn lọc là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: phương trình nghiệm nguyên chọn lọc.