Tài liệu gồm 69 trang phân dạng và tuyển tập các bài tập hệ phương trình nhiều ẩn do thầy Trần Sĩ Tùng biên soạn.
Nội dung tài liệu:
I. HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN
1. Hệ phương trình bậc nhất hai ẩn
2. Hệ phương trình bậc nhất nhiều ẩn
Nguyên tắc chung để giải các hệ phương trình nhiều ẩn là khử bớt ẩn để đưa về các phương trình hay hệ phương trình có số ẩn ít hơn. Để khử bớt ẩn, ta cũng có thể dùng các phương pháp cộng đại số, phương pháp thế như đối với hệ phương trình bậc nhất hai ẩn.
II. HỆ PHƯƠNG TRÌNH BẬC HAI HAI ẨN
1. Hệ gồm 1 phương trình bậc nhất và 1 phương trình bậc hai
Từ phương trình bậc nhất rút một ẩn theo ẩn kia.
Thế vào phương trình bậc hai để đưa về phương trình bậc hai một ẩn.
Số nghiệm của hệ tuỳ theo số nghiệm của phương trình bậc hai này.
2. Hệ đối xứng loại 1
Đặt S = x + y, P = xy.
Đưa hệ phương trình (I) về hệ (II) với các ẩn là S và P.
Giải hệ (II) ta tìm được S và P.
Tìm nghiệm (x, y) bằng cách giải phương trình: X^2 – SX + P = 0.
3. Hệ đối xứng loại 2
Trừ vế theo vế và đưa về phương trình tích.
4. Hệ đẳng cấp bậc hai
Giải hệ khi x = 0 (hoặc y = 0).
Khi x ≠ 0, đặt y = kx. Thế vào hệ (I) ta được hệ theo k và x. Khử x ta tìm được phương trình bậc hai theo k. Giải phương trình này ta tìm được k, từ đó tìm được (x; y).
[ads]
III. HỆ PHƯƠNG TRÌNH DẠNG KHÁC
Vấn đề 1: Phương pháp thế
Từ phương trình đơn giản nhất của hệ hoặc từ phương trình tích tìm cách rút một ẩn theo ẩn kia, rồi thế vào phương trình còn lại. Giải phương trình này. Số nghiệm của hệ tuỳ thuộc số nghiệm của phương trình này.
Một số dạng thường gặp:
+ Dạng 1: Trong hệ có một phương trình bậc nhất với ẩn x (hoặc y).
+ Dạng 2: Trong hệ có một phương trình có thể đưa về dạng tích của các biểu thức bậc nhất hai ẩn.
+ Dạng 3: Trong hệ có một phương trình có thể đưa về dạng phương trình bậc hai của một ẩn với ẩn còn lại là tham số.
Chú ý: Đôi khi có thể ta phải kết hợp biến đổi cả 2 phương trình của hệ để đưa về một trong các dạng trên.
Vấn đề 2: Phương pháp đặt ẩn phụ
Biến đổi các phương trình của hệ để có thể đặt ẩn phụ, rồi chuyển về hệ cơ bản.
Vấn đề 3: Phương pháp đánh giá
Từ điều kiện của ẩn, xét trường hợp xảy ra dấu “=” ở bất đẳng thức.
Vấn đề 4: Phương pháp hàm số
Chọn hàm số thích hợp, rồi sử dụng tính đơn điệu của hàm số.
Vấn đề 5: Hệ phương trình hoán vị vòng quanh
Vấn đề 6: Hệ phương trình giải được bằng phương pháp lượng giác hoá
Vấn đề 7: Hệ phương trình chứa tham số
Vấn đề 8: Giải phương trình bằng cách đưa về hệ phương trình
Bài toán phân dạng và bài tập hệ phương trình nhiều ẩn – trần sĩ tùng là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán phân dạng và bài tập hệ phương trình nhiều ẩn – trần sĩ tùng thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán phân dạng và bài tập hệ phương trình nhiều ẩn – trần sĩ tùng, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán phân dạng và bài tập hệ phương trình nhiều ẩn – trần sĩ tùng, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán phân dạng và bài tập hệ phương trình nhiều ẩn – trần sĩ tùng là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: phân dạng và bài tập hệ phương trình nhiều ẩn – trần sĩ tùng.