Tài liệu gồm 55 trang hướng dẫn một số phương pháp giải hệ phương trình trong chương trình Đại số 10 chương 3 (phương trình và hệ phương trình), tài liệu được biên soạn bởi thầy Nguyễn Văn Thiêm, giáo viên trường THPT Yên Thành 2 – Nghệ An.
PHẦN I. MỘT SỐ LOẠI HỆ PHƯƠNG TRÌNH THƯỜNG GẶP
VẤN ĐỀ 1. HỆ PHƯƠNG TRÌNH GIẢI BẰNG PHÉP THẾ
Cách giải hệ phương trình bằng phép thế là đưa nhiều ràng buộc về ít ràng buộc, đưa hệ nhiều phương trình về hệ ít phương trình hay là đưa hệ phương trình về phương trình. Bởi vậy, đây là cách làm tự nhiên nhất, theo quan điểm đưa cái phức tạp về cái đơn giản. Dấu hiệu nhận dạng đối với hệ phương trình giải bằng phép thế là ít nhất một trong các phương trình có thể rút được một ẩn qua các ẩn còn lại; việc thế vào những những phương trình kia cho ta phương trình hay hệ phương trình có thể giải được.
VẤN ĐỀ 2. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG KIỂU 1
Hệ phương trình hai ẩn đối xứng kiểu 1 là hệ phương trình hai ẩn mà khi ta hoán đổi vị trí hai ẩn, hệ không đổi.
VẤN ĐỀ 3. HỆ ĐỐI XỨNG KIỂU 2
Hệ phương trình đối xứng kiểu 2 là loại hệ phương trình mà khi ta hoán đổi vị trí các biến thì phương trình này thành phương trình kia và ngược lại.
VẤN ĐỀ 4. HỆ PHƯƠNG TRÌNH ĐẲNG CẤP HAI ẨN
[ads]
PHẦN II. MỘT SỐ PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH
VẤN ĐỀ 1. PHƯƠNG PHÁP BIẾN ĐỔI ĐẠI SỐ
1. Biến đổi một phương trình: Dùng cách này khi thấy một phương trình có yếu tố thuận lợi để biến đổi, tính toán hoặc các phương trình trong hệ ít có mối liên hệ với nhau.
+ Biến đổi một phương trình thành tích hoặc thành phương trình đa thức sao cho có thể biểu diễn một ẩn theo các ẩn còn lại.
+ Thế vào các phương trình còn lại.
2. Phương pháp cộng đại số, phép thế: Chúng ta thực hiện cách này khi thấy các vế của các phương trình có mối liên hệ rõ ràng về hình thức, khiến cho việc thực hiện phép thế hay cộng đại số làm xuất hiện phương trình mới đơn giản hơn.
+ Giữ nguyên một phương trình của hệ.
+ Cộng hay trừ từng vế của hai phương trình, hay thế một phương trình vào phương trình còn lại … để được phương trình mới.
+ Giải hệ bao gồm phương trình được giữ lại và phương trình mới.
VẤN ĐỀ 2. PHƯƠNG PHÁP ĐẶT ẨN PHỤ
1. Bài toán dễ phát hiện ẩn phụ
Đó là bài toán mà các đại lượng bên trong dễ “mã hoá” triệt để qua một hay một số ẩn số. Thông thường đó là tình huống đặt ẩn phụ để “bó” biểu thức rườm rà về một ẩn, đưa phân thức về đa thức, đưa căn thức về đa thức hay biểu thức chứa logarit, lượng giác về đa thức.
2. Bài toán đặt ẩn phụ sau một vài bước biến đổi
Khi thấy các biểu thức trong hệ phương trình có mối liên hệ đặc biệt về hình thức, ta nghĩ đến việc đặt ẩn phụ. Tuy nhiên, mối liên hệ đó không phải lúc nào cũng rõ ràng, do đó cần có những bước biến đổi đẳng thức làm ẩn phụ xuất hiện. Cũng có những hệ phương trình khó giải, chúng ta buộc có những biến đổi làm thay đổi hình thức bài hình thức để tìm lời giải, có thể khi đó mới phát hiện ẩn phụ.
VẤN ĐỀ 3. PHƯƠNG PHÁP HÀM SỐ
1. Biến đổi một phương trình về dạng f(u) = f(v)
+ Biến đổi một phương trình về dạng f(u) = f(v).
+ Chứng minh f(t) là hàm số luôn đồng biến hoặc luôn nghịch biến trên miền xác định của của nó, từ đó đi đến kết luận u = v.
+ Thế u = v vào phương trình còn lại.
2. Dự đoán tập nghiệm, chứng minh không còn nghiệm khác nữa
+ Đưa hệ về phương trình một ẩn dạng f(x) = 0.
+ Chỉ ra phương trình f'(x) = 0 có k nghiệm, chứng tỏ f(x) = 0 có nhiều nhất k + 1 nghiệm.
+ Liệt kê k + 1 nghiệm của f(x) = 0 và khẳng định đó là tập nghiệm phương trình. Từ đó suy ra tập nghiệm của hệ .
Bài toán một số phương pháp giải hệ phương trình – nguyễn văn thiêm là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán một số phương pháp giải hệ phương trình – nguyễn văn thiêm thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán một số phương pháp giải hệ phương trình – nguyễn văn thiêm, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán một số phương pháp giải hệ phương trình – nguyễn văn thiêm, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán một số phương pháp giải hệ phương trình – nguyễn văn thiêm là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: một số phương pháp giải hệ phương trình – nguyễn văn thiêm.