https://giaibaitoan.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022.
Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cần Thơ:
+ Trong mặt phẳng Oxy, cho parabol (P): y = 1/2.x2 và đường thẳng (d): y = (m + 2)x – m + 2. Tìm tất cả giá trị của tham số m sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) cùng nằm bên phải trục tung.
+ Hưởng ứng phong trào “Xanh hóa trường học”, lớp 9A và lớp 9B được nhà trường giao chỉ tiêu trồng 80 cây xanh xung quanh sân vườn của trường. Nếu lớp 9A trồng trong 2 giờ và lớp 9B trồng trong 1 giờ thì được 25 cây. Nếu lớp 9A trồng trong 1 giờ và lớp 9B trồng trong 2 giờ thì được 23 cây. Hỏi nếu cả hai lớp cùng trồng với nhau thì sau bao lâu hoàn thành chỉ tiêu được giao? Biết rằng, mỗi giờ số cây trồng được của mỗi lớp là không đổi.
+ Cho tam giác ABC nhọn (AB < AC). Gọi M và N lần lượt là trung điểm của AB và AC. Dựng bên ngoài tam giác ABC các tam giác đều ANI và BMK. Gọi điểm D là hình chiếu vuông góc của điểm A lên cạnh BC, điểm E là trung điểm của đoạn thẳng IK. a) Chứng minh tứ giác AKBD nội tiếp. b) Chứng minh điểm E là tâm đường tròn ngoại tiếp tam giác IKD. c) Tính số đo của NEM.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt cần thơ là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt cần thơ thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt cần thơ, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt cần thơ, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt cần thơ là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề tuyển sinh lớp 10 môn toán (chuyên) năm 2022 – 2023 sở gd&đt cần thơ.