Đề thi giữa học kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút.
Trích dẫn đề thi giữa học kỳ 2 Toán 9 năm 2020 – 2021 trường Bế Văn Đàn – Hà Nội:
+ Giải toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chu vi 160 m. Nếu tăng chiều rộng thêm 10m và giảm chiều dài đi 10m thì diện tích của mảnh đất tăng thêm 100m. Tính chiều dài và chiều rộng ban đầu của mảnh đất.
+ Cho hệ phương trình. a) Giải hệ phương trình khi m = 4. b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) sao cho x; y là hai số đối nhau.
+ Cho đường tròn (O). Điểm A ở ngoài đường tròn (O). Qua A kẻ cát tuyến d cắt đường tròn (O) tại hai điểm B và C (B nằm giữa A và C). Kẻ Đường kính EF BC tại D (E thuộc cung nhỏ BC).Tia AF cắt đường tròn (O) tại điểm thứ hai là I, các dây EI và BC cắt nhau ở K.
a) Chứng minh tứ giác DKIF nội tiếp.
b) Chứng minh EB = EK EI.
c) Chứng minh BE là tiếp tuyến của đường tròn ngoại tiếp AKIB.
d) Cho ba điểm A, B, C cố định. Chứng minh rằng khi đường tròn (O) thay đổi nhưng vẫn đi qua BC thì đường thẳng EI luôn đi qua 1 điểm cố định.
Bài toán đề thi giữa học kỳ 2 toán 9 năm 2020 – 2021 trường bế văn đàn – hà nội là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề thi giữa học kỳ 2 toán 9 năm 2020 – 2021 trường bế văn đàn – hà nội thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề thi giữa học kỳ 2 toán 9 năm 2020 – 2021 trường bế văn đàn – hà nội, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề thi giữa học kỳ 2 toán 9 năm 2020 – 2021 trường bế văn đàn – hà nội, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề thi giữa học kỳ 2 toán 9 năm 2020 – 2021 trường bế văn đàn – hà nội là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề thi giữa học kỳ 2 toán 9 năm 2020 – 2021 trường bế văn đàn – hà nội.