https://giaibaitoan.com giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi chọn HSG Toán 12 THPT năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc, đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút.
Trích dẫn đề thi chọn HSG Toán 12 THPT năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc:
+ Trong mặt phẳng với hệ trục toạ độ Oxy, cho tam giác ABC vuông tại A. Điểm D là chân đường phân giác trong góc A. Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB, AC. Đường tròn (x + 2)^2 + (y – 1)^2 = 9 ngoại tiếp tam giác DMN. Gọi H là giao điểm của BN và CM, đường thẳng AH có phương trình 3x + y – 10 = 0. Tìm tọa độ điểm B biết M có hoành độ dương, A có hoành độ nguyên.
+ Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, AA’ = a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) trùng với trung điểm cạnh AB. Gọi I là trung điểm của A’C, điểm S thỏa mãn IB = 2SI. Tính theo a thể tích khối chóp S.AA’B’B.
[ads]
+ Một hộp có 50 quả cầu được đánh số từ 1 đến 50. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Tính xác suất để tích 3 số ghi trên 3 quả cầu lấy được là một số chia hết cho 8.
+ Cho hàm số y = x^3 – 3x^2 – mx + 2 có đồ thị là (Cm). Tìm tất cả các giá trị thực của tham số m để (Cm) có điểm cực đại và điểm cực tiểu cách đều đường thẳng y = x – 1.
+ Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Mặt phẳng (P) đi qua trung điểm I của AG và cắt các đoạn AB, AC, AD tại các điểm khác A. Gọi hA, hB, hC, hD lần lượt là khoảng cách từ các điểm A, B, C, D đến mặt phẳng (P). Chứng minh rằng: (hB^2 + hC^2 + hD^2)/3 ≥ hA^2.
Bài toán đề thi chọn hsg toán 12 thpt năm học 2019 – 2020 sở gd&đt vĩnh phúc là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề thi chọn hsg toán 12 thpt năm học 2019 – 2020 sở gd&đt vĩnh phúc thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề thi chọn hsg toán 12 thpt năm học 2019 – 2020 sở gd&đt vĩnh phúc, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề thi chọn hsg toán 12 thpt năm học 2019 – 2020 sở gd&đt vĩnh phúc, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề thi chọn hsg toán 12 thpt năm học 2019 – 2020 sở gd&đt vĩnh phúc là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề thi chọn hsg toán 12 thpt năm học 2019 – 2020 sở gd&đt vĩnh phúc.