Thông tin về kỳ thi chọn học sinh giỏi Toán 12 năm học 2021 – 2022 tỉnh Quảng Trị
Ngày 05 tháng 11 năm 2021, Sở Giáo dục và Đào tạo tỉnh Quảng Trị đã tổ chức thành công kỳ thi chọn học sinh giỏi lớp 12 và chọn đội tuyển tham gia kỳ thi Quốc gia môn Toán năm học 2021 – 2022. Kỳ thi này là bước đệm quan trọng để phát hiện và bồi dưỡng những tài năng trẻ trong lĩnh vực Toán học của tỉnh.
Cấu trúc đề thi
Đề thi chọn học sinh giỏi Toán 12 năm 2021 – 2022 của Sở GD&ĐT Quảng Trị được cấu trúc thành hai vòng thi:
Đề thi được đánh giá là có độ khó cao, đòi hỏi thí sinh phải có kiến thức vững chắc, kỹ năng giải quyết vấn đề tốt và khả năng tư duy logic, sáng tạo.
Nội dung một số câu hỏi tiêu biểu
Dưới đây là trích dẫn một số câu hỏi trong đề thi, thể hiện rõ đặc trưng và mức độ khó của đề:
Với mỗi số nguyên dương n, xét phương trình nghiệm nguyên 3x2 – y2 = 23n. Yêu cầu:
Nhận xét: Đây là một bài toán về phương trình Diophantine, đòi hỏi thí sinh phải nắm vững các kiến thức về số học, đặc biệt là các tính chất của số nguyên tố và phương pháp xét tính chẵn lẻ. Việc chứng minh phương trình vô nghiệm khi n chẵn có thể sử dụng phương pháp phản chứng hoặc xét modulo.
Cho tam giác ABC nội tiếp đường tròn (O). Các điểm D, E thuộc đường thẳng BC sao cho AD vuông góc OB và AE vuông góc OC. Gọi M, N lần lượt là trung điểm AC, AB; G là giao điểm của EM và DN; S là giao điểm của OG và BC. Chứng minh rằng:
Nhận xét: Bài toán này tập trung vào kiến thức về hình học phẳng, bao gồm các tính chất của đường tròn nội tiếp, tam giác đồng dạng và các đường thẳng đặc biệt trong tam giác. Việc chứng minh tam giác đồng dạng đòi hỏi thí sinh phải tìm ra các góc hoặc cạnh tương ứng bằng nhau. Chứng minh SA là tiếp tuyến của (O) thường liên quan đến việc chứng minh góc SOA vuông.
Trong một giải đấu bóng bàn nam có n (n ≥ 3) vận động viên tham gia, hai vận động viên bất kỳ thi đấu với nhau đúng 1 trận (không có kết quả hòa). Kết thúc giải đấu, mỗi vận động viên sẽ viết ra tên những đối thủ thua mình và tên những vận động viên thua một trong các đối thủ đó. Một vận động viên được gọi là vô địch tương đối nếu anh ta viết được tên của tất cả n – 1 vận động viên còn lại. Gọi Sn là số vận động viên vô địch tương đối nhiều nhất có thể. Yêu cầu:
Nhận xét: Đây là một bài toán kết hợp giữa tổ hợp và logic, đòi hỏi thí sinh phải suy luận một cách chặt chẽ và tìm ra các cấu trúc đặc biệt trong giải đấu. Việc tính S3 và S4 có thể thực hiện bằng cách liệt kê các trường hợp có thể xảy ra. Chứng minh Sn = n với n ≥ 5 đòi hỏi thí sinh phải xây dựng một cấu trúc giải đấu thỏa mãn điều kiện đề bài.
Đánh giá chung
Đề thi chọn học sinh giỏi Toán 12 năm 2021 – 2022 của Sở GD&ĐT Quảng Trị được đánh giá là một đề thi chất lượng, có tính phân loại cao, giúp đánh giá đúng năng lực của học sinh. Các câu hỏi trong đề thi không chỉ kiểm tra kiến thức mà còn đòi hỏi thí sinh phải có khả năng vận dụng linh hoạt và sáng tạo trong giải quyết vấn đề.
Bài toán đề thi chọn học sinh giỏi toán 12 năm 2021 – 2022 sở gd&đt quảng trị là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề thi chọn học sinh giỏi toán 12 năm 2021 – 2022 sở gd&đt quảng trị thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề thi chọn học sinh giỏi toán 12 năm 2021 – 2022 sở gd&đt quảng trị, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề thi chọn học sinh giỏi toán 12 năm 2021 – 2022 sở gd&đt quảng trị, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề thi chọn học sinh giỏi toán 12 năm 2021 – 2022 sở gd&đt quảng trị là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề thi chọn học sinh giỏi toán 12 năm 2021 – 2022 sở gd&đt quảng trị.