https://giaibaitoan.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề cương ôn tập kiểm tra cuối học kỳ 1 môn Toán 12 năm học 2024 – 2025 trường THPT Ngô Quyền, quận Sơn Trà, thành phố Đà Nẵng.
1. Tính đơn điệu, cực trị của hàm số.
– Nhận biết được tính đồng biến, nghịch biến của một hàm số trên một khoảng dựa vào dấu của đạo hàm cấp một của nó.
– Thể hiện được tính đồng biến, nghịch biến của hàm số trong bảng biến thiên.
– Nhận biết được tính đơn điệu, điểm cực trị, giá trị cực trị của hàm số thông qua bảng biến thiên hoặc thông qua hình ảnh hình học của đồ thị hàm số.
– Tìm được các khoảng đơn điệu, điểm cực trị thông qua hình ảnh hình học của đồ thị hàm số y = f'(x).
2. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
– Nhận biết được giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một tập xác định cho trước.
– Xác định được giá trị lớn nhất, giá trị nhỏ nhất của hàm số bằng đạo hàm trong những trường hợp đơn giản.
3. Đường tiệm cận của đồ thị hàm số.
– Nhận biết được hình ảnh hình học của đường tiệm cận ngang, đường tiệm cận đứng, đường tiệm cận xiên của đồ thị hàm số.
– Tìm được tiệm cận của đồ thị hàm số.
4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
– Nhận biết được hình ảnh hình học của đường tiệm cận ngang, đường tiệm cận đứng, đường tiệm cận xiên của đồ thị hàm số.
– Mô tả được sơ đồ tổng quát để khảo sát hàm số (tìm tập xác định, xét chiều biến thiên, tìm cực trị, tìm tiệm cận, lập bảng biến thiên, vẽ đồ thị).
– Khảo sát được tập xác định, chiều biến thiên, cực trị, tiệm cận, bảng biến thiên và vẽ đồ thị của các hàm số.
– Nhận biết được tính đối xứng (trục đối xứng, tâm đối xứng) của đồ thị các hàm số trên.
5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn.
– Vận dụng được đạo hàm và khảo sát hàm số để giải quyết một số vấn đề liên quan đến thực tiễn.
6. Tọa độ của vectơ trong không gian.
– Nhận biết được vectơ và các phép toán vectơ trong không gian (tổng và hiệu của hai vectơ, tích của một số với một vectơ, tích vô hướng của hai vectơ).
– Nhận biết được toạ độ của một vectơ đối với hệ trục toạ độ.
– Xác định được độ dài của một vectơ khi biết toạ độ hai đầu mút của nó và biểu thức toạ độ của các phép toán vectơ.
– Xác định được biểu thức toạ độ của các phép toán vectơ.
– Vận dụng được toạ độ của vectơ để giải một số bài toán có liên quan đến thực tiễn.
7. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm.
– Tính được các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm: khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn.
– Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn.
– Chỉ ra được những kết luận nhờ ý nghĩa của các số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản.
– Nhận biết được mối liên hệ giữa thống kê với những kiến thức của các môn học khác trong chương trình lớp 12 và trong thực tiễn.
Bài toán đề cương cuối kỳ 1 toán 12 năm 2024 – 2025 trường thpt ngô quyền – đà nẵng là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.
Bài toán đề cương cuối kỳ 1 toán 12 năm 2024 – 2025 trường thpt ngô quyền – đà nẵng thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.
Để giải hiệu quả bài toán đề cương cuối kỳ 1 toán 12 năm 2024 – 2025 trường thpt ngô quyền – đà nẵng, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:
Bước 1: Hiểu Đề Bài
Bước 2: Lựa Chọn Phương Pháp Giải
Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:
Bước 3: Triển Khai Lời Giải
Bước 4: Kiểm Tra Kết Quả
Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:
Mẹo 1: Nắm Vững Kiến Thức Cơ Bản
Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.
Mẹo 2: Luyện Tập Thường Xuyên
Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.
Mẹo 3: Phân Tích Sai Lầm
Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.
Mẹo 4: Sử Dụng Tài Liệu Tham Khảo
Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.
Ví Dụ 1: Đề Bài Cụ Thể
Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”
Lời Giải:
Ví Dụ 2: Bài Tập Nâng Cao
Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:
Nếu bạn cần thêm tài liệu tham khảo để giải bài toán đề cương cuối kỳ 1 toán 12 năm 2024 – 2025 trường thpt ngô quyền – đà nẵng, dưới đây là một số nguồn hữu ích:
Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.
Bài toán đề cương cuối kỳ 1 toán 12 năm 2024 – 2025 trường thpt ngô quyền – đà nẵng là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.
Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!
>> Xem thêm đáp án chi tiết về: đề cương cuối kỳ 1 toán 12 năm 2024 – 2025 trường thpt ngô quyền – đà nẵng.