Logo Header
  1. Môn Toán
  2. các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán

các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán

Tài liệu gồm 62 trang, được biên soạn bởi nhóm tác giả Mathpiad − Tạp chí và tư liệu toán học: Phan Quang Đạt − Nguyễn Nhất Huy − Dương Quỳnh Châu, tổng hợp các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 chuyên Toán.

các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán

Chương I: Một số kiến thức sử dụng trong tài liệu.

1 Các định nghĩa ngoài sách giáo khoa.

+ Số chính phương là số có thể biểu diễn dưới dạng bình phương của một số tự nhiên.

+ Số lập phương là số có thể biểu diễn dưới dạng lập phương của một số nguyên.

2 Các kí hiệu, quy ước ngoài sách giáo khoa.

+ Kí hiệu a | b dùng thay cho mệnh đề “a là ước của b”, và đọc là “a chia hết b”.

+ Kí hiệu (a,b) dùng để chỉ ước chung lớn nhất của a và b. Đôi lúc, nó còn dùng để chỉ cặp số (a,b), vì thế cần phân biệt rõ.

+ Kí hiệu a ≡ b (mod m) dùng thay cho mệnh đề “a và b có cùng số dư khi chia cho m” và đọc là “a đồng dư với b theo modulo m”.

3 Các hằng đẳng thức mở rộng.

4 Các tính chất về ước chung lớn nhất.

+ Với các số nguyên a, b, c khác 0 thỏa mãn c | ab và (a,c) = 1, ta có thể suy ra c | b.

+ Với các số nguyên a, b, c khác 0 thỏa mãn ab = c2 và (a,c) = 1, ta có |a| và |b| là hai số chính phương.

+ Với các số nguyên a, b, c khác 0 thỏa mãn ab = c3 và (a,c) = 1, ta có a và b là hai số lập phương.

5 Các tính chất về đồng dư thức và chia hết.

(a) Tính chia hết của tổng, tích các số nguyên liên tiếp.

+ Tổng của n số nguyên liên tiếp luôn chia hết cho n.

+ Tích của n số nguyên liên tiếp luôn chia hết cho n!, ở đây n! là tích của tất cả các số tự nhiên từ 1 đến n.

(b) Nếu a ≡ b (mod m).

(c) Một số chính phương bất kì chỉ có thể:

+ Đồng dư với 0 hoặc 1 theo modulo 3.

+ Đồng dư với 0 hoặc 1 theo modulo 4.

+ Đồng dư với 0,1 hoặc 4 theo modulo 8.

(d) Định lý Fermat nhỏ: Cho p là số nguyên tố và a là số nguyên dương thỏa mãn a không chia hết cho p, khi đó a^ p − 1 ≡ 1 (mod p).

6 Bổ đề kẹp.

Giữa hai lũy thừa số mũ n liên tiếp, không tồn tại một lũy thừa cơ số n nào. Hệ quả: với mọi số nguyên a:

+ Không có số chính phương nào nằm giữa a2 và (a + 1)2.

+ Số chính phương duy nhất nằm giữa a2 và (a + 2)2 là (a + 1)2.

+ Có đúng k − 1 số chính phương nằm giữa a2 và (a + k)2.

7 Bổ đề về nghiệm nguyên của phương trình bậc hai.

Nếu phương trình bậc hai với hệ số nguyên ax2 + bx + c = 0 có hai nghiệm nguyên (không nhất thiết phân biệt) thì ∆ = b2 −4ac là số chính phương.

Chương II: Giới thiệu một số bài toán số học trong đề thi vào lớp 10 chuyên Toán.

Chương III: Lời giải tham khảo.

images-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-01.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-02.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-03.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-04.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-05.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-06.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-07.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-08.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-09.jpgimages-post/cac-bai-toan-so-hoc-tuyen-chon-tu-cac-de-tuyen-sinh-lop-10-chuyen-toan-10.jpg

File các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán PDF Chi Tiết

Giải bài toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán: Phương Pháp, Mẹo Học Hiệu Quả và Ví Dụ Chi Tiết

Bài toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán là một trong những nội dung quan trọng thường xuyên xuất hiện trong chương trình học và các kỳ thi. Đây không chỉ là một dạng bài tập phổ biến mà còn giúp rèn luyện tư duy logic và khả năng giải quyết vấn đề. Trong bài viết này, chúng ta sẽ cùng khám phá phương pháp tiếp cận hiệu quả, các mẹo học tập hữu ích, và những ví dụ chi tiết để bạn hiểu rõ hơn về cách giải bài toán này.

1. Tầm Quan Trọng Của Việc Giải Bài Toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán

Bài toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán thường xuất hiện trong các kỳ thi quan trọng, từ cấp THCS, THPT đến các kỳ thi đại học. Đây là một dạng bài tập không chỉ kiểm tra khả năng nắm bắt kiến thức lý thuyết mà còn đòi hỏi sự vận dụng linh hoạt.

  • Rèn luyện tư duy logic: Việc giải các bài toán thuộc dạng này giúp bạn phát triển khả năng tư duy phân tích, nhận biết mối quan hệ giữa các yếu tố trong bài toán.
  • Củng cố kiến thức: Qua quá trình luyện tập, bạn sẽ hiểu sâu hơn về các công thức, định lý, và phương pháp áp dụng.
  • Chuẩn bị cho kỳ thi: Việc làm quen với dạng bài này sẽ giúp bạn tự tin hơn khi bước vào phòng thi.

2. Phương Pháp Giải Bài Toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán

Để giải hiệu quả bài toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán, bạn cần tuân thủ một quy trình rõ ràng và áp dụng các phương pháp phù hợp. Dưới đây là các bước cơ bản:

Bước 1: Hiểu Đề Bài

  • Đọc kỹ đề bài để nắm bắt yêu cầu chính xác.
  • Xác định các yếu tố đã cho và cần tìm.
  • Phân tích mối liên hệ giữa các yếu tố.

Bước 2: Lựa Chọn Phương Pháp Giải

Tùy thuộc vào dạng bài toán, bạn có thể lựa chọn một trong các phương pháp phổ biến như:

  • Phương pháp trực tiếp: Sử dụng các công thức hoặc định lý có sẵn để giải bài.
  • Phương pháp gián tiếp: Biến đổi bài toán về một dạng quen thuộc hoặc dễ xử lý hơn.
  • Sử dụng đồ thị: Trong trường hợp bài toán liên quan đến hàm số hoặc biểu đồ.

Bước 3: Triển Khai Lời Giải

  • Áp dụng công thức và phương pháp đã chọn.
  • Trình bày các bước giải rõ ràng, logic.
  • Kiểm tra lại từng bước để đảm bảo không có sai sót.

Bước 4: Kiểm Tra Kết Quả

  • So sánh kết quả với yêu cầu đề bài.
  • Đánh giá xem lời giải có đáp ứng đầy đủ yêu cầu chưa.

3. Những Mẹo Học Hiệu Quả Khi Giải Bài Toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán

Để đạt hiệu quả cao khi giải dạng bài này, bạn nên áp dụng những mẹo sau:

Mẹo 1: Nắm Vững Kiến Thức Cơ Bản

Hãy chắc chắn rằng bạn hiểu rõ các công thức, định lý, và định nghĩa liên quan đến bài toán. Điều này sẽ giúp bạn tránh được những lỗi sai cơ bản.

Mẹo 2: Luyện Tập Thường Xuyên

Thực hành là cách tốt nhất để cải thiện kỹ năng giải toán. Hãy luyện tập với nhiều dạng bài khác nhau để nắm vững phương pháp và cách trình bày.

Mẹo 3: Phân Tích Sai Lầm

Mỗi lần mắc lỗi, hãy dành thời gian phân tích nguyên nhân và cách khắc phục. Điều này sẽ giúp bạn tránh lặp lại sai lầm trong tương lai.

Mẹo 4: Sử Dụng Tài Liệu Tham Khảo

Tìm kiếm các tài liệu, bài giảng trực tuyến, hoặc sách tham khảo uy tín để học hỏi thêm phương pháp giải và các mẹo hay.

4. Ví Dụ Chi Tiết Về Bài Toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán

Ví Dụ 1: Đề Bài Cụ Thể

Giả sử đề bài yêu cầu: “Tìm giá trị của [yêu cầu cụ thể].”

Lời Giải:

  • 1. Phân tích đề bài: [Chi tiết phân tích các yếu tố]
  • 2. Sử dụng phương pháp: [Phương pháp áp dụng và lý do chọn phương pháp này]
  • 3. Triển khai từng bước:
    • Bước 1: [Mô tả bước đầu tiên]
    • Bước 2: [Mô tả bước tiếp theo]

4. Kết quả cuối cùng: [Đáp án và kiểm tra lại đáp án].

Ví Dụ 2: Bài Tập Nâng Cao

Ngoài ra, bạn cũng có thể thử sức với bài toán nâng cao để phát triển kỹ năng:

  • Đề bài: “Chứng minh rằng [nội dung đề bài nâng cao].”
  • Gợi ý lời giải: [Cách tiếp cận và các bước triển khai chi tiết].

5. Tài Liệu Hỗ Trợ Học Tập

Nếu bạn cần thêm tài liệu tham khảo để giải bài toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán, dưới đây là một số nguồn hữu ích:

  • Sách tham khảo: Các sách chuyên đề về toán học.
  • Website học toán: Những trang web uy tín cung cấp bài tập và lời giải chi tiết.
  • Video bài giảng: Các kênh YouTube hoặc khóa học trực tuyến giúp bạn hiểu sâu hơn về phương pháp giải.

6. Lời Khuyên Từ Chuyên Gia

Theo các giáo viên và chuyên gia, việc học toán không chỉ dựa vào việc ghi nhớ công thức mà còn cần thực hành tư duy logic và khả năng vận dụng linh hoạt. Dành thời gian phân tích bài toán kỹ lưỡng trước khi bắt tay vào giải là yếu tố quyết định thành công.

7. Kết Luận

Bài toán các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán là một dạng bài không khó nếu bạn nắm vững phương pháp và luyện tập thường xuyên. Với những mẹo học tập và ví dụ chi tiết được chia sẻ trong bài viết, hy vọng bạn đã có thêm nhiều ý tưởng để cải thiện kỹ năng giải toán. Đừng quên tham khảo thêm tài liệu và tìm kiếm sự hỗ trợ nếu gặp khó khăn trong quá trình học.

Hãy bắt đầu thực hành ngay hôm nay để đạt kết quả tốt nhất!

>> Xem thêm đáp án chi tiết về: các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên toán.